20 research outputs found

    Raptorqp2P: Maximize The Performance Of P2P File Distribution With Raptorq Coding

    Get PDF
    BitTorrent is the most popular Peer-to-Peer (P2P) file sharing system widely used for distributing large files over the Internet. It has attracted extensive attentions from both network operators and researchers for investigating its deployment and performance. For example, recent studies have shown that under steady state, its rarest first scheme with the tit-for-tat mechanism can work very effectively and make BitTorrent near optimal for the generic file downloading process. However, in practice, the highly dynamic network environment, especially the notorious user churns prevalently existing in most peer-to-peer systems, can severely degrade the downloading performance. In this thesis, we first study on the limitations of BitTorrent under dynamic network environments, focusing on two scenarios where with our preliminary modeling and analysis, we clearly identify how network dynamics and peer churns can significantly degrade the performance. With these findings, we further propose a novel protocol named RaptorQP2P, which is based on RaptorQ coding, to overcome the limitations of current BitTorrent design and maximize the performance of P2P file distribution. The new protocol features two levels of RaptorQ encoding. At the top layer, the entire file is RaptorQ encoded to yield a collection of source blocks and repair blocks, and then each source and repair block is RaptorQ encoded independently to yield a collection of source symbols and repair symbols for the block. The symbols are independently transferred among the peers and when a sufficient number of distinct symbols for a particular block have been received, whether source or repair, the block can be reconstructed. The file can be reconstructed using a sufficient arbitrary number of distinct blocks. Our results show that RaptorQP2P can well handle the network dynamics as well as peer churns and significantly shorten the downloading completion time by up to 41.4% with excellent scalability on both file size and user population

    Education Equality and Its Influencing Factors for Migrant Children in the Compulsory Education Stage Based on Multi-Source Data: A Case Study of Dalian, China

    Get PDF
    Inequality in the admission of migrant children is an important manifestation of inequities at the compulsory education stage in China. Spatial differences in the allocation of educational resources and the factors affecting the number of enrolled migrant children led to the following conclusions: 1) the total number of migrant children in Dalian is growing situationally, with a total increase of 29,223 from 2008 to 2020. 2) The migrant children in Dalian in 2020 are distributed in a spatially uneven manner, with most of them concentrated in the periphery of the Ganjingzi District, south of the Jinzhou area (suburban areas), where very few of them were enrolled in high-quality junior high and primary schools. 3) The distribution of educational resources differed significantly between the central urban areas and suburban areas. 4) The internal factor of schools constraining the admission of migrant children is the teacher–student ratio. For every 1% increase in the teacher–student ratio, the number of migrant children decreases by 4.12%. The main external factors affecting the admission of migrant children were rental prices and the area occupied by construction, which increased by 1% for each 2,000 m buffer range of school and 0.25% for the number of migrant children and decreased by 0.29% for each 2,000 m buffer range of the school

    Simple and Effective Relation-based Embedding Propagation for Knowledge Representation Learning

    Full text link
    Relational graph neural networks have garnered particular attention to encode graph context in knowledge graphs (KGs). Although they achieved competitive performance on small KGs, how to efficiently and effectively utilize graph context for large KGs remains an open problem. To this end, we propose the Relation-based Embedding Propagation (REP) method. It is a post-processing technique to adapt pre-trained KG embeddings with graph context. As relations in KGs are directional, we model the incoming head context and the outgoing tail context separately. Accordingly, we design relational context functions with no external parameters. Besides, we use averaging to aggregate context information, making REP more computation-efficient. We theoretically prove that such designs can avoid information distortion during propagation. Extensive experiments also demonstrate that REP has significant scalability while improving or maintaining prediction quality. Notably, it averagely brings about 10% relative improvement to triplet-based embedding methods on OGBL-WikiKG2 and takes 5%-83% time to achieve comparable results as the state-of-the-art GC-OTE.Comment: Accepted by IJCAI 202

    Research on the Interactive Relationship of Spatial Expansion between Estuarine and Coastal Port Cities

    No full text
    In both developed and developing countries, port-city relationships have always attracted much attention. However, in the port–city interface, views differ as to whether the port drives the city or vice versa. The combination of remote sensing data and geospatial big data (point of interest) has provided a favorable solution. Taking the typical estuarine and coastal port cities in China’s coastal zone as an example, this study examines the following contents based on the port–city interface: the formation age of urban built-up areas and port areas on both sides of the port–city boundary; interaction between port and urban built-up areas; and the distribution of urban functional areas outside the port. Results show that the degree of spatial integration in estuarine port cities is higher than that of coastal port cities and that in the past 30 years, the expansion of ports has led to the expansion of cities. This expansion is port- and sea-oriented, and the expansion direction of the port city is consistent. On the port–city interface, the estuarine and coastal port cities form different urban regional structure modes. Aside from enriching literature on the port–city relationship, this study provides a reference for the spatial planning and transformation of ports and cities in the future

    Relationship between the Chinese Main Air Transport Network and COVID-19 Pandemic Transmission

    No full text
    The COVID-19 pandemic had an unprecedented impact on the civil aviation passenger transport industry. This study analyzes the scale change and spatial distribution of the Chinese main air transport network (CMATN) and its role in the early spread of the pandemic using a complex network analysis method and econometric model. The result shows that CMATN is mainly located in the economically developed and densely populated central and eastern regions of China. The normalized degree, closeness, and betweenness centralities of CMATN node cities show an overall increasing trend, indicating that the air transport network is constantly improving. There was a significant positive relationship between the centrality of node cities, the duration of the COVID-19 pandemic, and the number of confirmed cases, indicating that air transport networks were crucial in the pandemic’s early spread. Furthermore, social and economic variables such as GDP and population had a significant positive impact on the duration of the pandemic, indicating that higher levels of social and economic development increased the seriousness of the pandemic. Our findings are expected to supplement existing research and serve as a point of reference for pandemic prevention and control

    “Fast” Plasmons Propagating in Graphene Plasmonic Waveguides with Negative Index Metamaterial Claddings

    No full text
    We propose the monolayer graphene plasmonic waveguide (MGPW), which is composed of graphene core sandwiched by two graphene metamaterial (GMM) claddings and investigate the properties of plasmonic modes propagating in the waveguide. The effective refraction index of the GMMs claddings takes negative (or positive) at the vicinity of the Dirac-like point in the band structure. We show that when the effective refraction index of the GMMs is positive, the plasmons travel forward in the MGPW with a positive group velocity (vg > 0, vp > 0). In contrast—for the negative refraction index GMM claddings—a negative group velocity of the fundamental mode (vg < 0, vp > 0) appears in the proposed waveguide structure when the core is sufficiently narrow. A forbidden band appears between the negative and positive group velocity regions, which is enhanced gradually as the width of the core increases. On the other hand, one can overcome this limitation and even make the forbidden band disappear by increasing the chemical potential difference between the nanodisks and the ambient graphene of the GMM claddings. The proposed structure offers a novel scheme of on-chip electromagnetic field and may find significant applications in the future high density plasmonic integrated circuit technique

    Tunable Plasmonic Talbot Effect Based on Graphene Monolayer

    No full text
    In this article, the plasmonic Talbot effect supported by a graphene monolayer is investigated theoretically when surface plasmon polaritons (SPPs) are excited on the graphene. The Talbot effect distance is studied by varying the chemical potential, wavelength and the period of grating. The Talbot distance increases with the period in a parabolic way, and exhibits the opposite trends with respect to the chemical potential and wavelength. Moreover, the full width at half maximum (FWHM) of the Talbot image is recorded as a function of chemical potential and the wavelength. This study provides a new approach for sub-wavelength scale imaging and extends the applications of Talbot effect as well as graphene-based plasmonic devices

    Comparative Mitogenomic Analysis of Two Cuckoo Bees (Apoidea: Anthophila: Megachilidae) with Phylogenetic Implications

    No full text
    Bees (Hymenoptera, Apoidea and Anthophila) are distributed worldwide and considered the primary pollinators of angiosperm. Megachilidae is one of the largest families of Anthophila. In this study, two complete mitogenomes of cuckoo bees in Megachilidae, namely Coelioxys fenestrata and Euaspis polynesia, were amplified and sequenced, with a length of 17,004 bp (C. fenestrata) and 17,682 bp (E. polynesia). The obtained results show that 37 mitogenomic genes and one putative control region were conserved within Hymenoptera. Truncated stop codon T was found in the cox3 gene of E. polynesia. The secondary structure of small (rrnS) and large (rrnL) rRNA subunits contained three domains (28 helices) and five domains (44 helices) conserved within Hymenoptera, respectively. Compared with ancestral gene order, gene rearrangement events included local inversion and gene shuffling. In order to reveal the phylogenetic position of cuckoo bees, we performed phylogenetic analysis. The results supported that all families of Anthophila were monophyletic, the tribe-level relationship of Megachilidae was Osmiini + (Anthidiini + Megachilini) and Coelioxys fenestrata was clustered to the Megachile genus, which was more closely related to Megachile sculpturalis and Megachile strupigera than Euaspis polynesia

    Multiple Fano Resonances with Tunable Electromagnetic Properties in Graphene Plasmonic Metamolecules

    No full text
    Multiple Fano resonances (FRs) can be produced by destroying the symmetry of structure or adding additional nanoparticles without changing the spatial symmetry, which has been proved in noble metal structures. However, due to the disadvantages of low modulation depth, large damping rate, and broadband spectral responses, many resonance applications are limited. In this research paper, we propose a graphene plasmonic metamolecule (PMM) by adding an additional 12 nanodiscs around a graphene heptamer, where two Fano resonance modes with different wavelengths are observed in the extinction spectrum. The competition between the two FRs as well as the modulation depth of each FR is investigated by varying the materials and the geometrical parameters of the nanostructure. A simple trimer model, which emulates the radical distribution of the PMM, is employed to understand the electromagnetic field behaviors during the variation of the parameters. Our proposed graphene nanostructures might find significant applications in the fields of single molecule detection, chemical or biochemical sensing, and nanoantenna
    corecore